
Data Structures and Algorithm Analysis

2

Dr.Syed Asim Jalal
Department of Computer Science
University of Peshawar

 We can also interpret some series of 1s and 0s as
characters/alphabets.
 We assign a series of 1s and 0s some English

characters.
 Generally, we can represent 2n characters, in a

scheme that uses n bits to represent characters.
– e-g: 8 bits for each characters would represent 256

characters.
 How many bits needed to represent English

characters????
• 26 CAPITAL case LETTERS
• 26 Capital + 26 Lower case letter
• 26 Capital + 26 Lower + Digits + Special Characters.

Character Representation

2

Character Representation
 Different schemes for representation of

characters representation have been proposed.
– ASCII is one such representation where each 7

bits are used to represent English characters.
– e.g:

• A is represented by 01000001
• B is represented by 01000010

3

 Some characters representation schemes are
– ASCII: American Standard Code for Information

Interchange

– EBCDIC: Extended Binary Coded Decimal
Interchange Code

– Unicode: Universal Coding

4

 ASCII

– American Standard Code for Information Interchange
– It was designed in the early 60's, as a standard

character set for computers and electronic devices.
– Representation of English letters and some other

characters
– Each character is represented using 7 bits, while one bit

is used for parity checking.
– 7 bits could represent 128 characters

5

Representation of some characters

6

EBCDIC and Unicode
 EBCDIC:

• Extended Binary Coded Decimal Interchange Code
• EBCDIC uses 8 bits to represent characters
• 8 bits could represent 256 characters
• It was used mainly on IBM mainframe and IBM

midrange computer operating systems

 Unicode
• Unicode character coding was developed to

represent character set of many different languages
• Unicode using 16 bits encoding
• The latest version of Unicode cover over 128000

characters of over135 languages and many special
symbols. 7

So from the discussion of data
representation we can see that a
sequence of 0s and 1s mean nothing by
itself. The important thing is how we
assign meaning to any sequence of of 1s
and 0s and later interpret this sequence.

Some times we assign a numeric value
Some times we assign a signed number
Some times Alphabets

8

Data Types
– A Data Type describes a way of interpreting a

bit pattern in the memory.
– A Data Type defines internal representation of

data in the memory.
– It also specifies a set of operations on that data

type.
– It also defines the Hardware or Software

implementation of the data type
• Hardware implementation: Implementation by

processor.
• Software implementation: Implementation by

program.
9

Some Terminologies

 Data
– Data are any values or set of values

 Data Item
– Data item is a single unit of values

• Name, Age, Gender

 Group Item
– Data Items that are divided into sub-items are

called group items
• E.g. Name divided into First Name and Family Name

 Elementary Items
– Data items not divided into sub-items

• E-g: Age.
10

Some Terminologies
 Entity

– It is something that has certain attributes. Each
attributes has a value or values.

– For example:
• Student is an entity with attributes, Name, Age,

Gender, Date of Birth, etc.
• Each attributes has some value

 Entity Set
– Collection of all entities with same attributes
– Collection of all instances of an Entity

11

Some Terminologies

 Collection of data organized into Fields,
Records and Files.
 Field

– Field is a single unit of information representing
a single attribute of all entities.

– e-g: Name Field.
 Record

– It is collection of Field of values of one entity
 File

– It is a named collection of all records
representing all entities.

12

Arrays

13

Array
 Array is a composite or non-primitive data type, that is, it is

made up of simpler data types.
– Array is a data structure that organizes a collection of

data of the same data type using consecutive memory
cells.

– Array is a list of finite number ‘n’ of homogeneous
data elements, where:
• The elements of the array are stored in successive memory

locations
• The elements of the array are referenced by an index. Index

values are ‘n’ consecutive numbers.

 Arrays exists in most programming languages and operations
of this data structure are already implemented by those
programming languages. 14

15

 Each array element occupies the same number of
memory cells (bytes)

 Array data structure is used when the number of
elements are fixed.

 Operations like traversal, searching and sorting can
be easily performed on Array.

 The number of elements in an array is called the
Length or Size of the Array

 The size of array is specified at creation or
declaration of the array

16

 Index consists of integers 0,1,2,3…,n

 Index is mostly represented by a number in brackets after
name of the array, e-g. x[0], x[1], x[2], x[3], x[4], x[5]

 The name of the array is a pointer to first value. That is,
name of an array stores address of first memory.

 Arrays can be
– One dimensional array

• Array with one index. A[5]
– Two dimensional array

• Array with two indexes. A[5][3]
– Or n-dimensional

17

One dimensional array

 One dimensional array is the simplest form of
an Array

 One dimensional array may be defined as a
finite ordered set of homogeneous elements
– Finite means limited number of elements
– Homogeneous means all elements are of the

same type
– Ordered means that the elements are arranged

such there exists element at index 0, 1, 2 and
so on.

18

 In C language, we declare a one-dimensional array
as the following
– int arrayName[100] ;

• Name of the array is ‘arrayName’
• Total number of elements is 100
• Each elements is an integer
• ‘arrayName’ is a pointer and stores address of the

memory location of the first value

 The smallest index of an array is called Lower Bound, the
largest index is called Upper Bound

Size of array = Upper Bound – Lower Bound + 1
19

 Reading a value
– a[i] returns the value stored at index i
– The first value is referenced by index 0, that is,

a[0]

 Assigning a value
– a[i] = x;
– Value x is stored at location i
– Before any value is assigned to any location,

the value of that location is undefined.

20

Addressing in one-dimensional array

 As size of each element in an array is same, the
computer, therefore, does not need to know
address of each element in advance.

 Address of each element can be calculated during
run time using index number and the Base
Address of the array.
– The base address of the array is always known

and is represented by the name of the array.

21

 Address calculation:
– The address of the first location of an array B is

called base address of B, and is denoted by
Base(B)

– Suppose esize is the memory size of each
element.

• Then address of the B[0] element is Base(B)
• Address of B[1] element would be Base(B) + esize
• Address of B[2] would be Base(B) + 2 * esize
• So the general expression to reference address of B[i]

would be Base(B) + I * esize

22

What will happen if index of an array starts with
1 instead of 0 in any programming language?

 The formula to access B[i] becomes

Base(B)+ (i – 1) * esize

23

Two dimensional (2-D) array
 A two dimensional array has two indexes to address

each element, for example, B[2][4]
– First index represent Row and
– second index represent Column number.

 It has rows as well as columns. Such an array can be
considered as array of arrays.

24

 Total number of rows and columns is called range
of that dimension

 Thinking in 2 dimensions is convenient for
programmers in many situations.

– In situations where any set of values that are dependent
on two inputs.

– For example, a departmental store that has 20 branches
each selling 30 items.
• int sales[20][30];
• sales[i][j] would represent sales of item j in branch i.

25

 The problem in a 2-Dimensional array is that it is
only a logical data structure, because physical
hardware does not have such facility (i.e. memory is
linear and sequential addresses).

 A 2-D array must be stored linearly in the memory,
therefore, a method is needed that would convert a
Row and Column indexes of 2-D array in a linear
memory addresses.

26

Implementing a 2-D array

We have two major approaches for mapping
from 2-D logical space to 1-D physical space

 Two approaches
– Row Major order
– Column Major order

27

Row-Major Order
 The first row of the array occupies the first set of

memory locations reserved for the array, the
second row occupies the second set, and so on.

 For example, A[2][3] would be represented as:

28

 Finding address of an element in Row-Major Order

– Suppose int A[Rows][Columns] is stored in row-major
order with base address base(A) and element size esize.

– Then the address of the element A[r][c] can be calculated
by calculating the address of the first element of row r and
adding the quantity c * esize

– The address of first element of row r is base(A)+r
* cols * esize

– Therefore the address of A[r][c] is
base(A)+ (r * cols) * esize + c * esize

29

 Or simplifying the expression

We get the address of A[r][c] as:

base(A) + (r* cols +c)*esize

30

 Example:
– Address of A[r][c] = base(A)+(r*cols + c) * esize
– Here base(A)=100, rows=2, cols=3, esize=4

31

Array Initialisation Algorithm
– Algorithm for assigning array values

Suppose LB = LowerBound, UP=UpperBound and Array is
name of the Array

1. Initialise counter c to lower bound, c = LB
2. Repeat step 3 and 5 while c < = UB
3. value = input new value
4 Assign value at index c, Array[c] = value
5 Increment counter: c = c + 1
6. Exit

32

Array Traversal Algorithm
– Traversal means access each element of the array

once for process.

Suppose LB = LowerBound, UP=UpperBound and Array is
name of the array to traverse.

1. Initialise counter, c = LB
2. Repeat step 3 and 4 while c < = UB
3. visit and process Array[c]
4. Increment counter: c = c + 1
5. Exit

33

	Data Structures and Algorithm Analysis��2
	Character Representation
	Character Representation
	Slide Number 4
	Slide Number 5
	Representation of some characters
	EBCDIC and Unicode
	So from the discussion of data representation we can see that a sequence of 0s and 1s mean nothing by itself. The important thing is how we assign meaning to any sequence of of 1s and 0s and later interpret this sequence.��Some times we assign a numeric value�Some times we assign a signed number�Some times Alphabets
	Data Types
	Some Terminologies
	Some Terminologies
	Some Terminologies
	Arrays
	Array
	Slide Number 15
	Slide Number 16
	Slide Number 17
	One dimensional array
	Slide Number 19
	Slide Number 20
	Addressing in one-dimensional array
	Slide Number 22
	Slide Number 23
	Two dimensional (2-D) array
	Slide Number 25
	Slide Number 26
	Implementing a 2-D array
	Row-Major Order
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Array Initialisation Algorithm
	Array Traversal Algorithm

